3.413 \(\int \frac{(a+b x^2)^p}{x (d+e x)} \, dx\)

Optimal. Leaf size=176 \[ -\frac{e x \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} F_1\left (\frac{1}{2};-p,1;\frac{3}{2};-\frac{b x^2}{a},\frac{e^2 x^2}{d^2}\right )}{d^2}+\frac{e^2 \left (a+b x^2\right )^{p+1} \, _2F_1\left (1,p+1;p+2;\frac{e^2 \left (b x^2+a\right )}{b d^2+a e^2}\right )}{2 d (p+1) \left (a e^2+b d^2\right )}-\frac{\left (a+b x^2\right )^{p+1} \, _2F_1\left (1,p+1;p+2;\frac{b x^2}{a}+1\right )}{2 a d (p+1)} \]

[Out]

-((e*x*(a + b*x^2)^p*AppellF1[1/2, -p, 1, 3/2, -((b*x^2)/a), (e^2*x^2)/d^2])/(d^2*(1 + (b*x^2)/a)^p)) + (e^2*(
a + b*x^2)^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, (e^2*(a + b*x^2))/(b*d^2 + a*e^2)])/(2*d*(b*d^2 + a*e^2)
*(1 + p)) - ((a + b*x^2)^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, 1 + (b*x^2)/a])/(2*a*d*(1 + p))

________________________________________________________________________________________

Rubi [A]  time = 0.148597, antiderivative size = 176, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.35, Rules used = {959, 446, 86, 65, 68, 430, 429} \[ -\frac{e x \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} F_1\left (\frac{1}{2};-p,1;\frac{3}{2};-\frac{b x^2}{a},\frac{e^2 x^2}{d^2}\right )}{d^2}+\frac{e^2 \left (a+b x^2\right )^{p+1} \, _2F_1\left (1,p+1;p+2;\frac{e^2 \left (b x^2+a\right )}{b d^2+a e^2}\right )}{2 d (p+1) \left (a e^2+b d^2\right )}-\frac{\left (a+b x^2\right )^{p+1} \, _2F_1\left (1,p+1;p+2;\frac{b x^2}{a}+1\right )}{2 a d (p+1)} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^p/(x*(d + e*x)),x]

[Out]

-((e*x*(a + b*x^2)^p*AppellF1[1/2, -p, 1, 3/2, -((b*x^2)/a), (e^2*x^2)/d^2])/(d^2*(1 + (b*x^2)/a)^p)) + (e^2*(
a + b*x^2)^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, (e^2*(a + b*x^2))/(b*d^2 + a*e^2)])/(2*d*(b*d^2 + a*e^2)
*(1 + p)) - ((a + b*x^2)^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, 1 + (b*x^2)/a])/(2*a*d*(1 + p))

Rule 959

Int[(((g_.)*(x_))^(n_.)*((a_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Dist[(d*(g*x)^n)/x^n, In
t[(x^n*(a + c*x^2)^p)/(d^2 - e^2*x^2), x], x] - Dist[(e*(g*x)^n)/x^n, Int[(x^(n + 1)*(a + c*x^2)^p)/(d^2 - e^2
*x^2), x], x] /; FreeQ[{a, c, d, e, g, n, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] &&  !IntegersQ[n, 2
*p]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 86

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), In
t[(e + f*x)^p/(a + b*x), x], x] - Dist[d/(b*c - a*d), Int[(e + f*x)^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d,
e, f, p}, x] &&  !IntegerQ[p]

Rule 65

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)*Hypergeometric2F1[-m, n +
 1, n + 2, 1 + (d*x)/c])/(d*(n + 1)*(-(d/(b*c)))^m), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Inte
gerQ[m] || GtQ[-(d/(b*c)), 0])

Rule 68

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((b*c - a*d)^n*(a + b*x)^(m + 1)*Hype
rgeometric2F1[-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b^(n + 1)*(m + 1)), x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 430

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^F
racPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n,
p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 429

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, -((b*x^n)/a), -((d*x^n)/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2\right )^p}{x (d+e x)} \, dx &=d \int \frac{\left (a+b x^2\right )^p}{x \left (d^2-e^2 x^2\right )} \, dx-e \int \frac{\left (a+b x^2\right )^p}{d^2-e^2 x^2} \, dx\\ &=\frac{1}{2} d \operatorname{Subst}\left (\int \frac{(a+b x)^p}{x \left (d^2-e^2 x\right )} \, dx,x,x^2\right )-\left (e \left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p}\right ) \int \frac{\left (1+\frac{b x^2}{a}\right )^p}{d^2-e^2 x^2} \, dx\\ &=-\frac{e x \left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p} F_1\left (\frac{1}{2};-p,1;\frac{3}{2};-\frac{b x^2}{a},\frac{e^2 x^2}{d^2}\right )}{d^2}+\frac{\operatorname{Subst}\left (\int \frac{(a+b x)^p}{x} \, dx,x,x^2\right )}{2 d}+\frac{e^2 \operatorname{Subst}\left (\int \frac{(a+b x)^p}{d^2-e^2 x} \, dx,x,x^2\right )}{2 d}\\ &=-\frac{e x \left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p} F_1\left (\frac{1}{2};-p,1;\frac{3}{2};-\frac{b x^2}{a},\frac{e^2 x^2}{d^2}\right )}{d^2}+\frac{e^2 \left (a+b x^2\right )^{1+p} \, _2F_1\left (1,1+p;2+p;\frac{e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{2 d \left (b d^2+a e^2\right ) (1+p)}-\frac{\left (a+b x^2\right )^{1+p} \, _2F_1\left (1,1+p;2+p;1+\frac{b x^2}{a}\right )}{2 a d (1+p)}\\ \end{align*}

Mathematica [A]  time = 0.203014, size = 170, normalized size = 0.97 \[ \frac{\left (a+b x^2\right )^p \left (\left (\frac{a}{b x^2}+1\right )^{-p} \, _2F_1\left (-p,-p;1-p;-\frac{a}{b x^2}\right )-\left (\frac{e \left (x-\sqrt{-\frac{a}{b}}\right )}{d+e x}\right )^{-p} \left (\frac{e \left (\sqrt{-\frac{a}{b}}+x\right )}{d+e x}\right )^{-p} F_1\left (-2 p;-p,-p;1-2 p;\frac{d-\sqrt{-\frac{a}{b}} e}{d+e x},\frac{d+\sqrt{-\frac{a}{b}} e}{d+e x}\right )\right )}{2 d p} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*x^2)^p/(x*(d + e*x)),x]

[Out]

((a + b*x^2)^p*(-(AppellF1[-2*p, -p, -p, 1 - 2*p, (d - Sqrt[-(a/b)]*e)/(d + e*x), (d + Sqrt[-(a/b)]*e)/(d + e*
x)]/(((e*(-Sqrt[-(a/b)] + x))/(d + e*x))^p*((e*(Sqrt[-(a/b)] + x))/(d + e*x))^p)) + Hypergeometric2F1[-p, -p,
1 - p, -(a/(b*x^2))]/(1 + a/(b*x^2))^p))/(2*d*p)

________________________________________________________________________________________

Maple [F]  time = 0.645, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( b{x}^{2}+a \right ) ^{p}}{x \left ( ex+d \right ) }}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^p/x/(e*x+d),x)

[Out]

int((b*x^2+a)^p/x/(e*x+d),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{p}}{{\left (e x + d\right )} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p/x/(e*x+d),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^p/((e*x + d)*x), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x^{2} + a\right )}^{p}}{e x^{2} + d x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p/x/(e*x+d),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^p/(e*x^2 + d*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x^{2}\right )^{p}}{x \left (d + e x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**p/x/(e*x+d),x)

[Out]

Integral((a + b*x**2)**p/(x*(d + e*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{p}}{{\left (e x + d\right )} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p/x/(e*x+d),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^p/((e*x + d)*x), x)